Tutorial: Creatinga
Database Application
using Delphi

BorIan_d® .
Kylix" 3
Delphi” and C++ for Linux’

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001
www.borland.com

CoPYRIGHT © 20012002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

K3-Delphi_DB-0702

Contents

Creating a database application using

the Delphi IDE
Overview of database architecture 1 Addingamenu
Creating anew project 2 Addingabutton
Setting up data access components 3 Displaying a title and animage
Setting up the database connection 3 Writinganeventhandler
Setting up the unidirectional dataset 4 Writing the Update Now! command
Setting up the provider, client dataset, eventhandler
and datasource 5 Writing the Exit command event handler . .
Designing the user interface 6 Writing the FormClose event handler
Creating the grid and navigationbar 6

Adding support foramenu 8 |ndeX

iii

iv

Creating a database application
using the Delphi IDE

This tutorial guides you through the creation of an InterBase database application
with which you can view and update a sample employee database. You will use the
Delphi IDE to create the database application.

This tutorial assumes you are familiar with Linux and have read the introduction to
Kylix programming and the IDE in the Quick Start.

Note This tutorial is written for the Kylix Enterprise and Professional editions, which
include the database components. You must have InterBase installed to successfully
complete this tutorial.

Overview of database architecture

The architecture of a database application may seem complicated at first, but the use
of multiple components simplifies the development and maintenance of actual
database applications.

Database applications include three main parts: the user interface, a set of data access
components, and the database itself. In this tutorial, you will create a dbExpress
database application. Other database applications have a similar architecture.

The user interface includes data-aware controls such as a grid so that users can edit
and post data to the database. The data access components include the data source,
the client dataset, the data provider, a unidirectional dataset, and a connection
component. The data source acts as a conduit between the user interface and a client
dataset. The client dataset is the heart of the application because it contains a set of
records from the underlying database which are buffered in memory. The provider
transfers the data between the client dataset and the unidirectional dataset, which
fetches data directly from the database. Finally, the connection component

Creating a database application using the Delphi IDE 1

Creating a new project

establishes a connection to the database. Each type of unidirectional dataset uses a
different type of connection component.

Database application

Data module

< | | Data source >| Client dataset

Connection . |Unidirectional

-

component dataset

Provider

il

v

N———

For more information on database development, see “Designing database
applications” in the Developer’s Guide or online Help.

Creating a new project

2 Tutorial

Before you begin the tutorial, create a folder to hold the source files. Then open and
save a new project.

1 Create a folder called Tutorial to hold the project files you'll create while working
through this tutorial.

2 Use the default project already created when you start the Delphi IDE or begin a
new project by choosing File | New Application.

3 Choose File|Save All to save your files to disk. When the Save As dialog box
appears, navigate to your Tutorial folder and save each file using its default name.

Later on, you can save your work at any time by choosing File | Save All. If you
decide not to complete the tutorial in one sitting, you can open the saved version
by choosing File | Reopen and selecting the tutorial from the list.

Setting up data access components

Setting up data access components

Tip

Tip

Data access components are components that represent data (datasets), and the
components that connect these datasets to other parts of your application. Each data
access component points to the next lower component. For example, the data source
points to the client dataset, the client dataset points to the provider, and so forth.
When you set up the data access components, you'll add the lowest component first.

In the following sections, you'll add components to create the database connection,
unidirectional dataset, provider, client dataset, and data source. Afterwards, you'll
create the user interface for the application. These components are located on the
dbExpress, Data Access, and Data Controls pages of the Component palette.

It is a good idea to isolate your user interface on its own form and house the data
access components in a data module. However, to make things simpler for this
tutorial, you'll place the user interface and all the components on the same form.

Setting up the database connection

The dbExpress page contains a set of components that provide fast access to SQL
database servers.

You need to add a connection component so that you can connect to a database. The
type of connection component you use depends on what type of dataset component
you use. In this tutorial you will use the TSQLConnection and TSQLDataSet
components.

To add a dbExpress connection component:

1 Make sure the InterBase server has been started so that you can connect to the
sample employee database used in this tutorial. For information about starting the
server using the ibmgr utility, see the Interbase Operations Guide.

2 Click the dbExpress page on the Component palette and double-click the
TSQLConnection component to place it on the form. To find the TSQLConnection
component, point at an icon on the palette for a moment; a Help hint shows the
name of the component. The component is called SQLConnectionl by default.

The TSQLConnection component is nonvisual, so it doesn’t matter where you put
it. However, for this tutorial, line up all the nonvisual components at the top of the
form.

To display the captions for the components you place on a form, choose Tools |
Environment Options | Designer and click Show component captions.

3 In the Object Inspector, set the ConnectionName property to IBConnection (it’s on the
drop-down list).

4 Set the LoginPrompt property to False. By setting this property to False, you won't
be prompted to log on every time you access the database.

5 Double-click the TSQLConnection component to display the Connection editor.

Creating a database application using the Delphi IDE 3

Setting up data access components

I8

4 Tutorial

You use the Connection editor to select a connection configuration for the
TSQLConnection component or edit the connections stored in the dbxconnections
file in the .borland directory.

In the Connection editor, specify the pathname of the database file called
employee.gdb on your system. In this tutorial you will connect to a sample
InterBase database, employee.gdb, that is provided with Kylix. By default, the
InterBase installation places employee.gdb in /opt/interbase/examples.

dbhExpress Connections: homefjoanne/.borland/dbxconnections

=] af v[s]

Driver Mame Connection Seftings

|[AII] j Key value
You can choose from Connection Name Drivorllams ___|{Intarbasa_
Several database BEzConnaction Datahaze /optiinterbas
drivers to connect to olefame Rojenane

our database and InfartixConnection User_Name sysdba

¥ . I1y3QLConnection Password masterkey
then edl.t the . OracleCannection ServerCharget
connection settings. Postyre5QLCoNNection SGLDialect 1

ErrorResourceFile | /DhxlbEr.msg
LocaleCode oooo

BlobSize -1
CommitRetain False
WaltonLocks True

Interbase Translsoli ReadCommited

You can add, delete,
rename, and test
your connections.

oK Ccancel ‘ Help |

6 Check the User_Name and Password fields for acceptable values. If you have not
altered the default values, you do not need to change the fields. If database access
is administered by someone else, you may need to get a username and password
to access the database.

7 When you are done checking and editing the fields, click OK to close the
Connection editor and save your changes.

These changes are written to the dbxconnections file and the selected connection is
assigned as the value of the SQLConnection component’s ConnectionName property.

8 Choose File | Save All to save your project.

Setting up the unidirectional dataset

A basic database application uses a dataset to access information from the database.
In dbExpress applications, you use a unidirectional dataset. A unidirectional dataset
reads data from the database but doesn’t update data.

To add the unidirectional dataset:
1 From the dbExpress page, drop TSQLDataSet at the top of the form.

2 In the Object Inspector, set its SQLConnection property to SQLConnectionl (the
database connection created previously).

Setting up data access components

3 Set the CommandText property to Select * from sales to specify the command that
the dataset executes. You can either type the Select statement in the Object
Inspector or click the ellipsis to the right of CommandText to display the
CommandText editor, where you can build your own query statement.

4 Set Active to True to open the dataset.

5 Choose File|Save All to save the project.

Setting up the provider, client dataset, and data source

The Data Access page contains components that can be used with any data access
mechanism, not just dbExpress.

Provider components are the way that client datasets obtain their data from other
datasets. The provider receives data requests from a client dataset, fetches data,
packages it, and returns the data to the client dataset. In dbExpress, the provider
receives updates from a client dataset and applies them to the database server.

To add the provider:

#fzz] 1 From the Data Access page, drop a TDataSetProvider component at the top of the
la,, form.

2 In the Object Inspector, set the provider’s DataSet property to SQLDataSet1.

The client dataset buffers its data in memory. It also caches updates to be sent to the
database. You can use client datasets to supply the data for data-aware controls on
the user interface using the data source component.

To add the client dataset:

= 1 From the Data Access page, drop a TClientDataSet component to the right of the
TDataSetProvider component.

2 Set the ProviderName property to DataSetProviderl.

3 Set the Active property to True to allow data to be passed to your application.

A data source connects the client dataset with data-aware controls. Each data-aware
control must be associated with a data source component to have data to display and
manipulate. Similarly, all datasets must be associated with a data source component
for their data to be displayed and manipulated in data-aware controls on a form.

To add the data source:

=+ 1 From the Data Access page, drop a TDataSource component to the right of the
1 TClientDataSet component.

2 Set the data source’s DataSet property to ClientDataSetl.
3 Choose File | Save All to save the project.

So far you have added the nonvisual database infrastructure to your application.
Next you need to design the user interface.

Creating a database application using the Delphi IDE 5

Designing the user interface

Designing the user interface

(=

6 Tutorial

Now you need to add visual controls to the application so your users can view the
data, edit it, and save it. The Data Controls page provides data-aware controls that
work with data in a database and build a user interface. You'll display the database
in a grid and add a few commands and a navigation bar.

Creating the grid and navigation bar

To create the interface for the application:

1

You can start by adding a grid to the form. From the Data Controls page, drop a
TDBGrid component onto the form.

Set DBGrid’s properties to anchor the grid. Click the + next to Anchors in the Object
Inspector to display akLeft, akTop, akRight, and akBottom; set them all to True. The
easiest way to do this is to double-click False next to each property in the Object
Inspector.

Align the grid with the bottom of the form by setting the Align property to
alBottom. You can also enlarge the size of the grid by dragging it or setting its
Height property to 400.

Set the grid’s DataSource property to DataSourcel. When you do this, the grid is
populated with data from the employee database. If the grid doesn’t display data,
make sure you've correctly set the properties of all the objects on the form, as
explained in previous instructions.

So far your application should look like this:

= WK
SGLConnection? . SGLDataSet! - DataSetProvider]. ClientDataSetl. DataSourced

PO_NUMBER|CUST_NO |SALES_REP|ORDER_STATUS|ORDER_DATE SHIP_DATE
#|vIzF3004 1z 11 shipped 10/15/1932 01/16/1933
7VEZJ1DD3 10 B1 shipped 07/26/1932 0f/04/1932
7V832D63D 1001 127 open 12/12/1993
7V83242DD 1001 72 shipped 08/09/1933 08/09/1933
7V832432D 1001 127 shipped 0&/16/1933 0&/16/1933
7\/8333[”]5 1002 11 shipped 02/03/1933 05/03/1993
7\/8333[”]6 1002 11 shipped 04/27/1933 05/02/1933
7VESBETDD 1002 11 waiting 12/27/1993 01/01/1934
7\/8345138 1003 127 shipped 09/09/1933 09/20/1933
7V83452DD 1003 11 shipped 114111933 12/02/1993
7V834EZDD 1003 11 waiting 12/31/1993
7V‘33EHIJEIZ 1014 134 shipped 09/20/1933 09/21/1933
7V‘33CDTZD 1006 72 shipped 05/22/1993 05/31/1933
7V‘33CDESD 1006 72 shipped 08/09/1933 09/02/1933
7V‘33FDDZD 1009 B1 shipped 10/10/1933 114111933
7V‘33F2D3D 1z 134 open 12/12/1993
7V83FZDE1 1z 134 waiting 12/18/1993
7V‘33F3DEB 1z 134 shipped 0&/27/1933 09/08/1933
‘ L[]

=

Tip

Designing the user interface

The DBGrid control displays data at design time, while you are working in the
IDE. This allows you to verify that you've connected to the database correctly. You
cannot, however, edit the data at design time; to edit the data in the table, you'll
have to run the application.

From the Data Controls page, drop a TDBNavigator control onto the form. A
database navigator is a tool for moving through the data in a dataset (using next
and previous arrows, for example) and performing operations on the data.

Set the navigator bar’s DataSource property to DataSourcel so the navigator is
looking at the data in the client dataset.

Set the navigator bar’s ShowHint property to True. (Setting ShowHint to True allows
Help hints to appear when the cursor is positioned over each of the items on the
navigator bar at runtime.)

Choose File | Save All to save the project.

Press F9to compile and run the project. You can also run the project by clicking the
Run button on the Debug toolbar, or by choosing Run from the Run menu.

S Projectt - B X
el =[]] |
FO_MUMBER|CUST_NO _[SALES_REF|ORDER_STATUS[ORDER_DATE SHIP_DATE Ds
2 1012 11 shippes 10/15/1992 014161993 [ii
821003 1010 £1 shipped 0772611952 06041592 il
| |vaazoan 1001 127 open 1211211993 128
| |vaszazao 1001 72 shipped 0870971953 08091993 08
| |vaszaazn 1001 127 shipped 081 61953 0641641993 il
| |vaaaanns 1002 11 shipped 02/03/1993 03/03/1993
| |vazazons 1002 11 shipped 0472711953 050241993 05
| |vazasion 1002 11 waiting 127271 953 0140141894 1
| |vasas1as 1003 127 shipped 09/03/1393 09/201993 106
| |vazaszao 1003 11 shipped 1141141933 120241993 12
| |vazaszon 1003 11 waiting 127311953 1
| |vaagi00z 1014 134 shipped 09201993 09/21/1993 09
| |vascorzo 1006 72 shipped 0372241993 053141993 04
| |vascoasn 1006 72 shipped 0803 353 08/02/1993
| |vaaronzn 1009 61 shipped 1071071993 1141141993 1
| |vasFzoan 1012 134 open 1201211993
| |vasFzost 1012 134 waiting 1241801953 3
:vaaFauaa 1012 134 shipped 082711393 09/08/1993
4 DI

When you run your project, the program opens in a window like the one you
designed on the form. You can test the navigation bar with the employee database.
For example, you can move from record to record using the arrow commands, add
records using the + command, and delete records using the = command.

If you should encounter an error while testing an early version of your
application, choose Run | Program Reset to return to the design-time view.

Creating a database application using the Delphi IDE 7

Designing the user interface

Adding support for a menu

Though your program already has a great deal of functionality, it still lacks many
features usually found in GUI applications. For example, most applications
implement menus and buttons to make them easy to use.

In this section, you’ll add an action list. While you can create menus, toolbars, and
buttons without using action lists, action lists simplify development and
maintenance by centralizing responses to user commands.

1 If the application is still running, click the X in the upper right corner to close the
application and return to the design-time view of the form.

2 From the Common Controls page of the Component palette, drop an ImageList
component onto the form. Line this up next to the other nonvisual components.
The ImageList will contain icons that represent standard actions like cut and paste.

== 3 From the Standard page of the Component palette, drop an ActionList component
= | N
ik onto the form. Set the action list’s Images property to ImageListl.

4 Double-click the action list to display the Action List editor.

5 Right-click the Action List editor and choose New Standard Action. The Standard
Actions list box appears.

B Eciting Form1 .ActionListl RIS = ENED
i3 -+ ¥ Right-click in the |
| edgthor and choose | [fotion | Category =] —

Categaries: Actions:
T CEERETE New Standard TDataSetPrior Dataset Cancel
{No Catagory) / . . TDataSetRetresh Dataset

Action to display TEGitCopy Edit Help

the Standard TEdiItCut Edit

Actions list box. A |TEditDelte Edit

X Edit

Select the actions TEditselectall Edit

you want and click THelpContents Help

OK. Press Ctrl to T I

select multiple

actions.

6 Select the following actions: TEditCopy, TEditCut, and TEditPaste. (Use the Ctrl key
to select multiple items.) Then click OK.

These standard actions appear in the Action List editor with default images
already associated with them.

Bl Editing Form .ActionListl - 0 X
ta -t t ¥
Categories: Actions
(Mo Category) [4 EditCutt You've added three standard
DEdiCopy1 actions that come with the
Ik EdtPaste] product. You'll use these on a
menu.

8 Tutorial

Designing the user interface

Right-click the Action List editor and choose New Action to add another action
(not provided by default). Actionl is added by default. In the Object Inspector, set
its Caption property to Update Now!

This same action will be used on a menu and a button. Later on, you'll add an
event handler so it will update the database.

Click (No Category), right-click and choose New Action to add another action.
Action? is added. Set its Caption property to E&xit.

Click the X (in the upper right corner) to close the Action List editor.

You've added three standard actions plus two other actions that you'll connect to
event handlers later.

10 Choose File | Save All to save the project.

Adding a menu

In this section, you'll add a main menu bar with two drop-down menus—File and
Edit—and you'll add menu items to each one using the actions in the action list.

1

From the Standard page of the Component palette, drop a TMainMenu component
onto the form. Drag it next to the other nonvisual components.

Set the main menu’s Images property to Imagelistl to associate the image list with
the menu items.

Double-click the TMainMenu component to display the Menu Designer.

=l Form1.MainMenul -0 X

Creating a database application using the Delphi IDE 9

Designing the user interface

4 Type &File to set the Caption property of the first top-level menu item and press
Enter.

Ohject Inspectar When you type &File BEEY Formi .MainMenul e
[Fite: Thtenutem | and press Enter, the -

top-level File command
appears ready for you

Fraperties I Events |

ﬁz:::mkeys maParent -to add the firSt menu
Eitmap (Mane) item.

Caption The ampersand before
Checked |False acharacteractivates an
SNEEEl e accelerator key.
Groupindex |0

HelpContext |0

Helpkeywiar

HelpType |htkeyword
Hint
Imagelndex | -1
Mama File1
Radioltem |False
ShorCut |(Mone)
Tag i
Wisible True

[&1 shown

5 Select the blank menu item below the File menu. Set the blank menu item’s Action
property to Action2. An Exit menu item appears under the File menu.

6 Click the second top-level menu item (to the right of File). Set its Caption property
to &Edit and press Enter. Select the blank menu item that appears under the Edit
menu.

7 In the Object Inspector, set the Action property to EditCutl and press Enter. The
item’s caption is automatically set to Cut and a default cut bitmap appears on the
menu.

8 Select the next blank menu item (under Cut) and set its Action property to EditCopyl
(a default copy bitmap appears on the menu).

9 Select the next blank menu item (under Copy) and set its Action property to
EditPastel (a default paste bitmap appears on the menu).

10 Select the next blank menu item (under Paste) and set its Caption property to a
hyphen (-) to create a divider line in the menu. Press Enter.

11 Select the next blank menu item (under the divider line) and set its Action property
to Actionl. The menu item displays Update Now!

12 Click the X to close the Menu Designer.
13 Choose File | Save All to save the project.

10 Tutorial

Designing the user interface

14 Press F9 or Run on the toolbar to run your program and see how it looks.

=2 Project1 E(mE ¢
Eile Edit
=
i 1 I 1 K S P
CUST_NO_[sALES_REF[ORDER_STATUS[ORDER_DATE
1012 11 shipped 10/15¢1992
¥92J1003 1010 &1 shipped 072641992
| |vaszosan 1001 127 open 1241241393
| |vaazazno 1001 72 shipped 08/09/1993
| |vazzaazo 1001 127 shipped 08/16/1993
| |vasasnos 1002 11 shipped 02/03/1393
| |vaaaanns 1002 11 shipped 04/27/1993
| |vazasino 1002 11 walting 1242741993
| |vazasiaa 1003 127 shipped 09/09/1393
| |vasaszno 1003 11 shipped 1141141993
| |vazaszao 1003 11 walting 1243141993
| |vasei002 1014 134 shipped 09/20/1393
| |vaacoizo 1006 72 shipped 03/22/1993
| |vazcoaso 1006 72 shipped 08/09/1993
| |vasFaonzn 1008 81 shipped 1041041393
| |vaarzoan 1012 134 open 12121993
:vaanusw 1012 134 walting 124181993 -
| |vasFanas 1012 134 shipped 08/27/1393 _|,:f

Many of the commands on the Edit menu and the navigation bar are operational at
this time. Copy and Cut are grayed on the Edit menu until you select some text in the
database. You can use the navigation bar to move from record to record in the
database, insert a record, or delete a record. The Update command does not work yet.

Close the application when you're ready to continue.

Adding a button

This section describes how to add an Update Now button to the application. This
button is used to apply any edits that a user makes to the database, such as editing
records, adding new records, or deleting records.

To add a button:

1 From the Standard page of the Component palette, drop a TButton onto the form.
(Select the component then click the form next to the navigation bar.)

2 Set the button’s Action property to Actionl.

The button’s caption changes to Update Now! When you run the application, it
will be grayed out until an event handler is added to make it work.

Creating a database application using the Delphi IDE 11

Displaying a title and an image

Displaying a title and an image

You can add a company title and an image to make your application look more
professional:

Al

From the Standard page of the Component palette, drop a TLabel component onto
the form. Kylix names this Labell by default.

In the Object Inspector, change the label’s Caption property to World Corp or another
company name.

Change the company name’s font by clicking the Font property. Click the ellipsis
that appears on the right and in the Font dialog box, change the font to Helvetica
Bold, 16-point type. Click OK.

Object npeci - %
ILahEH'TLahEI -I - Fot stul .
" Eon ont style Size

Properiies | Events | ;(ou cfan change the [Helvetica faobe] ol 15
mAnchors [akLEﬂ,aKTU;:;l Om 0 the |abe| Courier [adobe] | |MNarmal & -

Autosize | True using the_ Font Helvetica [adobe] Obligue 9

Eitmap {Fionis) property in the :ewthrEtL;ryhs?hoolbook [adabe] :10

H Ymool [anobe| o ique
ioruterswle S\TN?;Z Object Inspector. Tgs fadobe] "
aption arld Car . oo
= e el Click the ellipsis to Avanigarde 14
lor clsackgroum ispl Courier [hitstream] =l -

@ Constraints |(TSizeCanstr disp a_y a standard

Cursar crDefault font d|a|09 box. —_— Effects — Sample

Draghode | dmkianual ™ Strikeout

Enabled |True I~ Undetline aaBhis

FocusCantra
E Font m I, Script
il i | [westen 150 8853-1) =l

v

4 Position the label in the upper right corner.

(2]

12 Tutorial

From the Additional page of the Component palette, drop a TImage component
next to the label. Kylix names the component Imagel by default.

To add an image to the Imagel component, click the Picture property. Click the
ellipsis to display the Picture editor.

In the Picture editor, choose Load and navigate to the icons directory provided
with the product. The default location is {install directory}/images/icons. For
example, if Kylix is installed in your /usr/local/kylix directory, look in /usr/
local/kylix/images/icons.

Double-click earth.ico. Click OK to load the picture and to close the Picture editor.

Writing an event handler

9 Size the default image area to the size of the picture. Place the image next to the

label.
B Form1 o You can set the size of
Eile Edi the Image1 component

- EEEEEE - IR T LR (RS R | EEE st | SR e t?caa:;clf:];?geﬁltzmme
- SGLConnection: SGLDataSet - DataSetProvider!: ClientDataSetl. DataSourcel . ImageList] . ActionList! © p
e ways: drag the edge of
Image1, or change the

S |WorIdCorp:

) Width and Height
x T properties in the Object
'::u|4|p|n|+|—|A|-/|x|("[:: Llpdatean\ll.l Inspector.
FO_MUMBER|CUST_NO _[SALES_REF|ORDER_STATUS[ORDER_DATE

¥ 9zF3004 1012 11 shipped 1071571392

| |vazaro03 1010 &1 shipped 07/26/1392

| |vaazoao 1001 127 apen 121211593

| |vazzazao 1001 72 shipped 08/09/1393

| |vaszaazn 1001 127 shipped 08/16/1393

10 To align the text and the image, select both objects on the form, right-click, and
choose Align. In the Alignment dialog box, under Vertical, click Bottoms.

11 Choose File | Save All to save the project.
12 Press F9to compile and run your application.

13 Close the application when you're ready to continue.

Writing an event handler

Most components on the Component palette have events, and most components
have a default event. A common default event is OnClick, which gets called whenever
a component, such as TButton, is clicked. If you select a component on a form and
click the Object Inspector’s Events tab, you'll see a list of the component’s events.

For more information about events and event handlers, see “Developing the
application user interface” in the Developer’s Guide or online Help.

Writing the Update Now! command event handler

First, you'll write the event handler for the Update Now! command and button:
1 Double-click the ActionList component to display the Action List editor.
2 Select (No Category) to see Actionl and Action2.

Creating a database application using the Delphi IDE 13

Writing an event handler

Note

3 Double-click Actionl. In the Code editor, the following skeleton event handler
appears:

procedure TForml.ActionlExecute(Sender: TObject);
begin

end;
Right where the cursor is positioned (between begin and end), type:

if ClientDataSetl.State in [dsEdit, dsInsert] then ClientDataSetl.Post;
ClientDataSetl.ApplyUpdates(-1);

This event handler first checks to see what state the database is in. When you move
off a changed record, it is automatically posted. But if you don’t move off a changed
record, the database remains in edit or insert mode. The if statement posts any data
that may have been changed but was not passed to the client dataset. The next
statement applies updates held in the client dataset to the database.

Changes to the data are not automatically posted to the database when using
dbExpress. You need to call the ApplyUpdates method to write all updated, inserted,
and deleted records from the client dataset to the database.

Writing the Exit command event handler

Next, you'll write the event handler for the Exit command:

1 Double-click the ActionList component to display the Action List editor if it is not
already displayed.

2 Click (No Category) so you see Action2.

3 Double-click Action2. The Code editor displays the following skeleton event
handler:

procedure TForml.Action2Execute(Sender: TObject);
begin
end;
Right where the cursor is positioned (between begin and end), type:
Close;

This event handler will close the application when the File | Exit command on the
menu is used.

4 Close the Action List editor.
5 Choose File | Save All to save the project.

14 Tutorial

Writing an event handler

Writing the FormClose event handler

Finally, you'll write another event handler that is invoked when the application is
closed. The application can be closed either by using File | Exit or by clicking the X in
the upper right corner. Either way, the program checks to make sure that there are no
pending updates to the database and displays a message window asking the user
what to do if changes are pending.

You could place this code in the Exit event handler but any pending database
changes would be lost if users chose to exit your application using the X.

1 Click the grid area of the main form to select the form itself.
2 Select the Events tab in the Object Inspector to see the form events.

3 Double-click OnClose (or type FormClose next to the OnClose event and click it). A
skeleton FormClose event handler is written and displayed in the Code editor
after the other event handlers:

procedure TForml.FormClose(Sender: TObject; var Action: TCloseAction);
begin

end;
Right where the cursor is positioned (between begin and end), type:
Action := caFree;
if ClientDataSetl.State in [dsEdit, dsInsert] then
ClientDataSetl.Post;
if ClientDataSetl.ChangeCount> 0 then
begin
Option := Application.MessageBox('You have pending updates. Do you want to write
them to the database?', 'Pending Updates', [smbYes, smbNo, smbCancel],
smsWarning, smbYes);
case Option of
smbYes: ClientDataSetl.ApplyUpdates(-1);
smbCancel: Action := calNone;
end;
end;

This event handler checks the state of the database. If changes are pending, they
are posted to the client dataset where the change count is increased. Then before
closing the application, a message box is displayed that asks how to handle the
changes. The reply options are Yes, No, or Cancel. Replying Yes applies updates to
the database; No closes the application without changing the database; and Cancel
cancels the exit but does not cancel the changes to the database and leaves the
application still running.

4 You need to declare the variable used within the procedure. On a line between
procedure and begin type:

var
Option: TMessageButton;

Creating a database application using the Delphi IDE 15

5 Check that the whole procedure looks like this:

procedure TForml.FormClose(Sender: TObject; var Action: TCloseAction);
var
Option: TMessageButton;
begin
Action := caFree;
if ClientDataSetl.State in [dsEdit, dsInsert] then
ClientDataSetl.Post;
if ClientDataSetl.ChangeCount> 0 then
begin
Option := Application.MessageBox('You have pending updates. Do you want to write
them to the database?', 'Pending Updates', [smbYes, smbNo, smbCancel]
smsWarning, smbYes);
case Option of
smbYes: ClientDataSetl.ApplyUpdates(-1);
smbCancel: Action := calNone;
end;
end;
end;

6 To finish up, choose File | Save All to save the project. Then press F9 to run the
application.

Tip Fix any errors that occur by double-clicking the error message to go to the code in
question or by pressing F1 for Help on the message.

That’s it! You can try out the application to see how it works. When you want to exit
the program, you can use the fully functional File | Exit command.

16 Tutorial

A

ActionList component 8
adding
a database connection to an application 3
a grid to an application 6
a menu to an application 8 to 11
a title to an application 12
an image to an application 12
an Update Now button to an application 11
unidirectional dataset component 4
applying edits to database 11

Button component 11
button, adding Update Now 11

C

ClientDataSet component 5
code, writing 13 to 16
compiling programs 7
components

ActionList 8

Button 11

ClientDataSet 5

DataSetProvider 5

DataSource 5

DBGrid 6

DBNavigator 7

Image 12

ImageList 8

Label 12

MainMenu 9

nonvisual 3

SQLConnection 3

SQLDataSet 3
connection component, adding 3
creating a project 2

Index

D

database applications

accessing 3 to 4

overview 1
database sample, employee.gdb 4
database user name and password 4
DataSetProvider component 5
datasets

client 5

unidirectional 4
DataSource component 5
dbExpress 1
DBGrid component 6
DBNavigator component 7

E

employee.gdb sample database 4
event handlers, creating 13 to 16
events 13

G

grid, adding to an application 6

ibmgr utility 3

icons, adding to application 12
Image component 12

image, adding to application 12
ImageList component 8
Interbase server, starting 3

L

Label component 12

MainMenu component 9
menu, adding to an application 8 to 11

Index

N

navigating data in the dataset 7
nonvisual components 3

P

password for database 4
project

creating 2

running 7

R

running applications 7

vi Tutorial

S

sample database 4
SQLConnection component 3
SQLDataSet component 3

T

title, adding to application 12

U

unidirectional dataset 4
updating a database 11
user name for database 4

	Tutorial:�Creating a Database Application using Delphi
	Contents
	Creating a database application using the Delphi IDE
	Overview of database architecture
	Creating a new project
	Setting up data access components
	Setting up the database connection
	Setting up the unidirectional dataset
	Setting up the provider, client dataset, and data source

	Designing the user interface
	Creating the grid and navigation bar
	Adding support for a menu
	Adding a menu
	Adding a button

	Displaying a title and an image
	Writing an event handler
	Writing the Update Now! command event handler
	Writing the Exit command event handler
	Writing the FormClose event handler

	Index
	A
	B
	C
	D
	E
	G
	I
	L
	M
	N
	P
	R
	S
	T
	U

